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Introduction



Introduction

A Main Goal: Evaluating performance of statistical learning methods

with different software packages and hardware using atmospheric data.

• Atmospheric data provided by NOAA and prepared for the Machine

Learning in Python for Environmental Science Problems AMS Short

Course. 1

Tools to use and evaluate:

• Tensorflow

• CPU / GPU

1https://github.com/djgagne/ams-ml-python-course/blob/master/module_2/

ML_Short_Course_Module_2_Basic.ipynb
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Background

Machine learning with meteorological data

• Machine learning has been used to accurately forecast rain type,

clouds, hail, and to perform quality control.2

• Can be useful in the place of physically based models by giving

meaningful results without the time or computational cost. 3

• Binary classification of severe weather can be difficult. 4

• A false alarm can result in mistrust from the public.

• A missed alarm can result in expensive damage and loss of life.

2Nourani et al. 2019, Ghada et al. 2019, McGovern et al. 2017, Lakshmanan et al.

2015
3Nourani et al. 2019
4Barnes et al. 2017
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Taki



Hardware on Taki

We plan to implement a larger scale application of Tensorflow in the

following settings.

CPU

• HPCF2013: 49 compute, 2 develop, and 1 interactive nodes, each

containing two 8-core Intel Ivy Bridge CPUs

• HPCF2018: 42 compute and 2 develop nodes, each with two 18-core

Intel Skylake CPUs and 384 GB of memory

GPU

• HPCF2018: 1 GPU node containing 4 NVIDIA Tesla V100 GPUs

connected by NVLink and 2 Intel Skylake CPUs
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Scheduling rules on taki – CPU

How to access 2013/2018 CPU on Taki?

• 2013 batch nodes

#SBATCH – –partition=batch

#SBATCH – –constraint=hpcf2013

• 2018 develop nodes – cnode[001,030]

#SBATCH – –account=pi gobbert

#SBATCH – –qos=short+

#SBATCH – –partition=develop

#SBATCH – –constraint=hpcf2018

• 2018 CPU nodes – 42 nodes with names

cnode[002-029,031-044]

#SBATCH – –account=pi gobbert

#SBATCH – –qos=short+

#SBATCH – –partition=high mem
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Scheduling rules on taki – GPU

How to access 2018 GPU on Taki?

#SBATCH – –gres=gpu:2 # 2 is the number of requested GPUs

#SBATCH – –constraint=hpcf2018
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Research Problem



Research Question

Predict probability of storm rotation using low-level vorciticy

thresholds, radar reflectivity, surface wind, and temperature.

Figure 1: Tornadic storm frequency figure example from the AMS short

course. A tornadic storm is defined as a storm with a maximum vorticity

greater than 0.005.
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Data

All data used was aquired from the Machine

Learning in Python for Environmental

Science Problems AMS Short Course 5

• ˜80,000 Convective storm centroids

across central U.S.

• A storm is defined as having simulated

radar reflectivity greater than 40 dBZ.

• 32 x 32 x 4 ”images”

• Unbalanced data set:

majority/minority ∼ 19 : 1

Figure 2: An example image of

the radar reflectivity and wind

field for a storm

5Data can be downloaded from: https://storage.googleapis.com/track_data_

ncar_ams_3km_csv_small/track_data_ncar_ams_3km_csv_small.tar.gz
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Building the Network



A simple 1-layer dense neural network (DNN) model

Figure 3: A diagram of the dense neural network
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A simple multi-layer convolutional neural network (CNN) model
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Data Augmentation



Data Augmentation Techniques

• Neural networks trained with unbalanced dataset may be biased

toward predicting the majority classes.

• Augmentation techniques to handle class imbalancy of the data set:

• Undersample the majority clas;

• Oversample the minority class;

• Generate synthetic images.

• For example:

Figure 4: Images of kittens generated by rotation, flipping, and scaling. 6

6https://medium.com/nanonets/

how-to-use-deep-learning-when-you-have-limited-data-

part-2-data-augmentation-c26971dc8ced

11

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-
https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-
part-2-data-augmentation-c26971dc8ced


Data Augmentation Techniques (Cont.)

For DNN model, we used imblearn.over sampling.RandomOverSampler

to over-sample the minority class(es) by picking samples at random with

replacement.

Issues: This method only takes rank 2 array as input.

For CNN model,

• Online augmentation – use

keras.preprocessing.image.ImageDataGenerator to generate real-time

tensor image data by rotation, and flip.

• Offline augmentation – use skimage.transform.rotate to generate

synthetic images by rotations at the preprocessing stage

Main Observations: Data augmentation doesn’t have a noticeable

effect on the metrics of interests for this data set. 12



Data Augmentation Techniques – Sample Synthetic Image

(Cont.)

Figure 5: Duplicated image before rotation.
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Data Augmentation Techniques – Sample Synthetic Image

(Cont.)

Figure 6: Synthetic image generated by rotation.
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Parallelization



Parallelization of Hyperparameter Tuning

We have attempted to semi-parallelize hyperparameter tuning using a

built-in gridsearch (or randomsearch) function in Scikitlearn (paired with

keras) across a single node, by manually assigning the number of

processes to run the models simultaneously.

Fully parallelizing distributed Keras models is not generically supported

within keras/dask distributed. However, there has been recent

development linking dask distributed directly with tensorflow. We tried

to test this process.
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Dask Distributed dashboard

Figure 7: An example image from the Dask Distributed dashboard
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Results and Discussion



Results for Parallel Study – CPU

Figure 8: Accuracy results for a range of batch sizes and learning rates with 5

epochs
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Results for Parallel Study – CPU (Cont.)

Figure 9: Accuracy results for a range of batch sizes and learning rates with 10

epochs
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Results for Parallel Study – CPU (Cont.)

Figure 10: Accuracy results for a range of batch sizes and learning rates with

15 epochs
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Results for Parallel Study – GPU

Figure 11: The training time for each batch size for runs on 2013 (red) and

2018 (blue) nodes.
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Summary

• Proposed a general framework for augmentation and a parallel

tuning scheme for hyperparameters.

• Tested on 2013 and 2018 Taki nodes.

• Efficient parallelism is most comprehensively shown by the timing

results in the 2013 and 2018 configurations. The 2018 cluster has

twice (32) as many available processors as the 2013 nodes (16).
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Potential Future Directions

• Parallelize the hyperparameter tuning process using GPU enabled

tensorflow on taki

• Complete a more robust study using a dataset that can train on an

order of days rather than hours.
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