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What is a supercell (dynamically)?

A thunderstorm with a rotating updraft (typically, updraft vertical
velocities > 10 m s correlated with vertical vorticity { > 0.01 s™)
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What motivates supercell research...

* Although most significant tornadoes are associated with
supercell thunderstorms, most supercells are not tornadic

» Perhaps the biggest motivation for supercell research is
discriminating between tornadic and nontornadic
supercells
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Current forecasting methods:
Significant tornado parameter

Storm
Prediction

| Center

Norman, Oklahoma

&2 5

MLCAPE X 2000 —MLLCLX 200-|-MLC1NX EBWD . SRH500
1500 k™! 1000m 150 ket 20ms™t 75mim

CAPE convective available potential energy

LCL lifted condensation level

CIN convective inhibition

EBWD effective bulk wind difference

SRH500 0 — 500 m storm relative helicity Thompson etal

2003, 2007, 2012

ML = mixed layer (i.e., lowest 100 mb of the atmosphere) Coffer et al. 2019



Current Status of Machine Learning in Weather Forecasting

e The use of machine learning in severe weather forecasting is recently starting to take off
(McGovern et al. 2019).

® Emerging efforts attempting to recreate the National Weather Service’s tornado warning process
primarily uses radar data. (Lagerquist et al. 2020)

o This requires the storm to have already formed. (lead time ~10-15 min)

Our Research Approach:

Using RUC sounding data, we construct several Random Forest (RF) and a Convolutional Neural
Network (CNN) Models to predict, in advance, whether a supercell storm will produce a
significant tornado (F2-F5), a weak tornado (FO-F1), or no tornado.

-

Novel aspects of this research: )

e By focusing on pre-storm environment from soundings, predictions could be useful for
forecasters many days in advance.

e Longterm goal is to use advantages of machine learning to identify novel structures in
\_ data to guide future research questions in severe storm modeling and forecasting.
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Hardware and Software

Hardware: UMBC High Performance Computing Facility (www.hpcf.umbc.edu)
* Studies used a CPU node with two 18-core Intel Xeon Gold 6140 Skylake CPUs (2.3 GHz
clock speed, 24.75 MP L3 cache, 6 memory channels)

Software: Python 3.7.6 along with the following packages
» scikit-learn (v. 0.23.dev0), imbalanced-learn (v. 0.6.2), TensorFlow (v. 2.1.0),
Keras (v. 1.1.0)
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http://www.hpcf.umbc.edu

WHAT DATA DO WE HAVE?
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Observed sounding

-
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- Balloons only launched twice a day from 70 locations across the United States
- Would take centuries to sample enough storms to generate required dataset
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Model based soundings

2 m AGL Temperature (°F), 10 m AGL Wind (kt)
F000 Valid: Fri 2020-04-17 00z Init: Fri 2020-04-17 00z

= - 7 ) “» e Objective analysis schemes compile
W - observations from many different
sources to create a high-resolution,
“best guess” of the current state of
the atmosphere, in order to
initialize forecast models

e We can then extract vertical
soundings from these analyses for
any severe weather report in the
United States, instead of relying
solely on the twice a day sounding
network

23.62° N 67.14° W
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20194 supercell vertical profiles from 2005-2017

These were manually identified by looking over 100,000+ severe weather reports
and filtered to only include supercell storms

Sample Size B)
Tornadic: 9,355 cases

- 7,743 “weak tornadoes”

- 1,612 “significant tornadoes”
Nontornadic: 10,839 cases

- 7,051 severe hail reports

- 3,788 severe wind reports

Each vertical profile has

7 variables:

- pressure (hPa)

- temperature (C) - relative humidity (%)

- dewpoint temperature (C) - u-component of wind (m/s) Data from Smith et al. (2012)
- height above ground level - v-component of wind (m/s) and Coffer et al. (2019)

(m)
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L
Data Structure

- Variables: Temperature, Dewpoint, Humidity, U-wind, V-wind, Pressure, and Height

- Height = height above ground-level at 25hPa increments up to 100 hPa, converted to meters

- Severe storm reports at higher elevations correspond with lower surface pressure, so there
are a variable number of vertical (height) levels at variable heights in the 20,194 samples

lat lon event type height temp etc

report 1 35.21 | -104.3 ‘nontornadic’ [10, 253, ...] [24.56, 23.12,...]

report 2 38.63 | -107.68 ‘weakly tornadic’ [10, 115, ...] [22.31, 20.35,...]

report 20194 | 33.46 | -99.98 | ‘significantly tornadic’ [10, 198, ...] B|[19.46,18.91, ...]

(Height Data Variability:

e All storms have at least 26 vertical levels
e 8,479 storms have 37 vertical levels

® Heights at each level vary by storm

temperature, dewpoint, humidity, U-wind,
V-wind, and pressure measurements
correspond to recorded heights

\_
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Standardizing Height Levels

Underlying motivation: Can RF and CNN models find novel structures in
the data that help discriminate between nontornadic and tornadic
storms without preconceived computed parameters?

Height Data

17500

= = AvgHeight
Need uniformly structured data with 15000 | veriee i
respect to height: 1 I

® Current height levels have wide -
ranges: Vertical Level 20 has height 100007
range 4831m-8085m s 7500 -

e Compute average heights at each e u"-'
vertical level “lul'

e Interpolate variable measurements 23001 ‘*.‘_“.l-.

(temperature, dewpoint, etc.) over 0] o

average heights 0 5 1o 15 20 25 30 3
Height Readings

Height (m)
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Random Forest Classification (RF)

Motivation for using this method:
e Can do multiclass classification

e Can handle large number of input features
 Feature Importance: Can estimate which features contribute most in the classification,
potentially revealing important structures in the data.

How it works:

* ltisanensemble method that uses randomized decision trees as its base models.
* The algorithm trains a (user specified) set of decision trees separately, and aggregates votes

from the trees to give a final prediction for each training object.
* Reduces variance in the predictions, and thus boosts testing performance.
 “Randomness” is injected into the algorithm in two ways:

1. On each iteration, it takes a new random subsample of the given dataset so that it
uses a different training set.
2. It uses arandom subset of features to determine how to split on each tree node.
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Data Format for Random Forest (RF)

Temp1 |Temp 2 |.. | Temp 37 | Dewpoint1 | ... Pressure 37 Event
1 16.71 17.00 ... | -67.24 15.83 100.17 weak
2 20.46 19.99 ... |-69.09 18.12 100.26 weak
3 20.53 19.69 ... |-70.53 18.08 100.44 nontornadic
20194 2112 20.26 ... |-69.09 19.98 100.11 weak

Total Number of Features = 6*37 =222
(37 each of temperature, dewpoint, humidity, U-wind, V-wind, and pressure)




Random Forest (RF) Model Current Results
(. Output Classifications: )
Create RF Model and /Output Classifications:
Input: RUCSoundings - Evaluater o on - [0] - Nontornadic
(Train 80%, Test 20%) (Python Sk‘,eam) [1] - Weakly Tornadic (FO-F1)
Parameter Settings: [2] - Signif. Tornadic (F2-F5)
n_estimators = 200
max_depth = 200 Output Data:
Kclass_weights =‘balanced’ j Confusion Matrix
Feature Importance Scores j
Confusion Table
Accuracy Scores (by class)
Predicted | [0] [1] [2] Class | Total | Predicted | Accuracy | [ )
A 0 2172 | 1837 84.58% Overall
[0] 1837 |307 |28 1] o570 Accuracy
- 71.6%
[1] 550 986 30 [1] 1568 | 986 62.88% \ y
2] 52 s |69 [21 |299 |69 23.08%
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Random Forest Results: Skill Scores

Sig.-Tornadic/Nontornadic ( [2] vs [0])

Contigency Table Score RF Prediction | Forecasting
Actual Yes [2] No [0] POD 0.53 0.69
Predicted ) ’
Yes [2] 69 28 FAR 0.29 0.26

(Hits) (False alarms)
No [0] 6 1837 CSlI 0.44 0.55

(Misses) | (Correct Rejects)

TSS 0.51 0.44

POD = Probability of Detection= Hits/(Observed)

FAR = False Alarm Ratio= (False Alarms)/(Predicted)

CSI = Critical Success Index = Hits/(All)

TSS = True Skill Statistic = (Hits*Rejects-False*Misses)/(Observed*None)

Observed= hits + misses

Predicted= hits + false alarms

All = hits + false alarms + misses
None = false alarms + correct rejects
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Random Forest Feature Importance Analysis

Feature Importances
% *  v-wind Accuracy Scores with and without
el - < u-wind pressure
0.0175 | [ J deWpOint
Y humidity
oos0] | * § ‘tempersturs Class | Accuracy Accuracy
v * *  pressure (w/pressure) (w/o pressure)
§ 0.0125 A .
9001001 *  at 4 [0] 84.58% 83.28%
E v *
000754 ¥ *
00050 s ‘«4«41- 4 0 [1] 62.88% 60.94%
! b L
T LR A
0.0025 1 et M LA R A [2] 23.08% 23.84%
*
6 ZOIOO 40|00 60|00 SOIOO 10(|)00 12(|)00 14600 16(|)00 Total 71.6% 70.14%
Height (m)

RF Feature Importance Analysis Notable Observations:
® Pressure is consistently the lowest ranked feature
e V-wind below 4 km is of highest importance overall
® U-wind is most importance between 1-6 km
e Humidity and dewpoint have highest importance scores at their lowest levels



Known Key Features of Tornado Formation

Feature Importances

V-wind importance at lower altitudes: oo0] + vwind
Low-altitude vertical wind shear correlates with the oo v ety
. 0.0150 ® temperature
strength of the convergence and stretching by the 8 o125 e * pressure
supercell on developing vortices Zoouo] ; Cew s
. *
0.0075 1 1 % *
<
. . . 0.0050 A L] * ol !
Relative Humidity Importance at Lowest Altitudes: 00025 %ﬁ!m!!!ﬂ!, et
Low-altitude relative humidity measurements can predict (T Ty
. Height (m
downdraft coldness. Storms with colder downdrafts are e

Variable Contributions

less likely to undergo tornadogenesis coc]

u-wind

Storms with high low-altitude relative iy
humidity and high vertical wind shear .
are more likely form tornadoes

0.00 0.05

010 015 020 025
Cumulative Importance Score
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Random Forest Feature Importance Analysis

RUC/RAP mean hodographs

— —8— significantly tornadic |

v-wind (m/s)

—&— nontornadic
. —e— weakly tornadic

~_

G-wind (m/s)

Wind profiles for nontornadic, weakly
tornadic, and significantly tornadic

supercells. Dots represent 500 m, 1 km, 2

km, .etc above ground level.

Hodograph depicts how wind
velocities change with respect to
height.

Moving left to right on each curve,
each dot represents the mean
velocities at increasing heights
above ground level.

ﬁmportance of v-wind feature\

Larger v-wind results in
“curved” hodographs and these
curved hodographs lead to
more intense supercells
capable of producing tornadoes




L
Outline

d  Part |: Background & Motivation

(d What is a supercell?

(A RUCsounding Data

(A Research problem & motivation

Part Il: Data Preprocessing

Part Ill: Random Forest

[d  Results

[d  Feature Importance Analysis

(A Part IV: Convolutional Neural Network
d  Model Description
[ Results

1 Part V: Over and Undersampling Applied to RF and CNN
1 Imbalanced Data
1 Results

L



Convolutional Neural Network




What is CNN?

A Convolutional Neural Network (CNN) is comprised of one or more
convolutional layers and then followed by one or more fully connected
layers as in a standard multilayer neural network.

— CAR
— TRUCK
— VAN

d d — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
j \ CONNECTED
FEATURE LEARNING CLASSIFICATION

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional
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Convolutional Layer

The first layer in a CNN is always a Convolutional layer which is to
extract features from the input. Convolution preserves the spatial
relationship between pixels by learning features using small portion of

input data. Original Image Filtered Image
1 416 13 11219 O/o0 0 010
1/941 _1/911 1/9
2 411 43 1110 0 0} 5 0
194 _1/94. . 1/9
5 41046 |9 | 7 0 0
19l 179l 179
3 1 0O}/ 2 8 0 0
4 14 2| 9 110 O,0 0 00




Channels

Channel is used to refer to a certain component of the input.
For example, an image from a standard digital camera has three
channels - red, green and blue.

http://www.adsell.com/scanning101.html



Convolution Operation on Channels

When the input has more than one channels, the filter should have the
same number of channels. To calculate one output cell, perform
convolution on each channel, then add the result together.

210 0! 2 021212} 0
010 210 2111012} 0
212 210 11112]112
114 2 210 2,00 21 o
21112fo0}o0 21110 21}1 110/ 21110
+ + =
0111 11110 01111
TERR 14111 11110
ofofo 11110 11011




Convolution with Multiple Filters

Multiple filters can be used in a convolutional layer to detect multiple
features. The output of the layer then will have the same number of
channels as the number of filters applied in the layer.

Filter 1

Input

Output

3x3x3 4x4

i Filter 2

4x4x2

4x4 https://indoml.com
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Other Layers

Pooling: pooling layer is used to reduce the size of the feature
representations and to speed up calculations.
- E.g. Max pooling

Fully connected (FC) layer: it is used to learn non-linear function from
the output of the previous layers.
- Input to a FC layer is a 1D feature vector. So need to flat the 3D
volume feature representation to a 1D vector.
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Data Format for CNN

Special Feature: the data has 37 vertical levels. Thus, we are only interested in
features in this dimension.

Channels: each vertical profile has 6 variables (components). So there will be 6
channels in our data: temperature, dewpoint, humidity, u-wind, and v-wind
Input Format: 20194 x 37 x 6

v-comp. of wind

u-comp. of wind

relative humidity Eo’
height S
dewpoint temp. éb
temperature

pressure

level 1 2 3 37



CNN Model Updates: Model Structure

: Output Classifications:

Input: interpolated Create CNN Model [[0111_ r:l‘ontc?fns;c;f: oS A
RUCSounding Data - and Evaluate - [1] - Weakly Tornadic (F0-F1)
(Train 80%, Test 20%) (Python keras) [2] - Signif. Tornadic (F2-F5)

Output:
. \_Accuracy W,
Basic model structure
Conv1D Flatten ‘ Dense Network Accuracy:
64 filters 100 filters 65.365% +/-0.775%

i 1 ! 1

ConviD - MaxPooling Dense Network - Output
128 filters pool size = 2 softmax output Classification




L
CNN Model Structure

Model: "sequential_12"

Simple model

Layer (type) Output Shape Param #
(None, 62, 128) 24704
max_poolingld_16 (MaxPooling (None, 31, 128) 0
flatten_11 (Flatten) (None, 3968) 0
dense_22 (Dense) (None, 100) 396900
dense_23 (Dense) (None, 3) 303

Total params: 422,931
Trainable params: 422,931
Non-trainable params: @

Complicated model

Model: "sequential 11"

Layer (type) Output Shape Param #
Fm] (None, 64, 32) 512
batch_normalization_2 (Batch (None, 64, 32) 128
max_poolingld_13 (MaxPooling (None, 32, 32) 0
convld_24 (Conv1D) (None, 30, 64) 6208
batch_normalization_3 (Batch (None, 30, 64) 256
max_poolingld_14 (MaxPooling (None, 15, 64) 0
convld_25 (Convi1D) (None, 13, 128) 24704
batch_normalization_4 (Batch (None, 13, 128) 512
max_poolingld_15 (MaxPooling (None, 6, 128) 0
flatten_10 (Flatten) (None, 768) 0
dense_20 (Dense) (None, 100) 76900
dense_21 (Dense) (None, 3) 303

Total params: 109,523
Trainable params: 109,075
Non-trainable params: 448
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CNN Results: Skill Scores

Tornadic/Nontornadic (Classes [1,2] vs [0])

Score Prediction Forecasting Contingency Table
POD 0.80 0.71 Actual Yes [1,2] | No [0]
Predicted
FAR 0.23 0.34 Yes [1,2] | 1299 676
(Hits) (False alarms)
CSl 0.65 0.52
No [0] 533 1531
TSS 0.43 0.40 (Misses) (Correct Rejects)

Observed= hits + misses

Predicted= hits + false alarms

All = hits + false alarms + misses
None = false alarms + correct rejects

POD = Probability of Detection= Hits/(Observed)

FAR = False Alarm Ratio= (False Alarms)/(Predicted)

CSI = Critical Success Index = Hits/(All)

TSS = True Skill Statistic = (Hits*Rejects-False*Misses)/(Observed*None)
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RF vs. CNN: Significantly-Tornadic/Nontornadic

Simple CNN Model

Score | Random | Simple | Complex | Forecasting
Actual Yes [2] No [0] Forest CNN CNN
Predicted
vesizl | 6 » POD |0.53 0.03 0.53 0.69
(Hits) (False alarms)
FAR 0.29 0.65 0.34 0.26
No [0] 211 1873
Mi C t Reject
(Misses) | (ComectReIecD | 1esi | 0.44 0.03 0.41 0.55
SOWDL AGN L TSS | 0.51 002 |050 0.44
Actual Yes [2] No [0]
Predicted
POD = Probability of Detection= Hits/(Observed)
Yes [2] 75 43 FAR = False Alarm Ratio= (False Alarms)/(Predicted)
(Hits) (False alarms) CSI = Critical Success Index = Hits/(All)
TSS = True Skill Statistic =
No [0] ?l\:;)lisses) (1(§Zfrect Rejects) (Hits*Rejects-False*Misses)/(Observed*None)
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Imbalanced dataset issue

Sampling Size for each class
12000

10000

Non Significant Weak

How to solve the imbalanced sampling issue:

Sampling: Rebalancing
the dataset

Under-sampling /

Imbalanced Data

\ Over-sampling

imblearn.under_sampling.RandomUnderSampler
imblearn.over_sampling.RandomOverSampler

e Undersample the majority class by deleting some samples at random in this class;

® Oversample the minority class by duplicating some samples at random;

® Generate synthetic data to adjust the ratio of majority and minority classes.
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CNN Results: Undersampling/Oversampling

® Both undersampling and
oversampling increase the
class accuracy for the

significantly tornadic class Class Before Undersample Oversample
Accuracy
e Undersampling severely : - - -
impacts the accuracy of Nontornadic 80.38% 56.59% 77.03%
the nontornadic class Weak Tornadic | 58.19% 58.19% 57.46%
e Oversampling increases Sig. Tornadic 26.69% 37.94% 36.01%

the accuracy of
significantly tornadic class
without decreasing the
nontornadic class
considerably
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RF Results: Undersampling/Oversampling

e Undersampling severely
impacts the accuracy of
the nontornadic and weak
tornadic classes, but Nontornadic 83.28% 69.78% 83.58%
increases the class
accuracy for the

Signif:ca”t'ytomadicC'ass Sig. Tornadic | 23.84% 65.85% 33.53%
greatly

Class Accuracy | Before | Undersample | Oversample

Weak Tornadic | 60.94% 47.02% 55.43%

o ..
Oversampling increases We also applied oversampling using SMOTE() function

the accuracy of which gave accuracies 78.4%, 58.6%, and 42.81% for
significantly tornadic class nontornadic, weak tornadic, and significantly tornadic
without decreasing the classes respectively.

nontornadic class
considerably
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RF and CNN with Under/Oversampling

e When apply oversampling strategy for imbalanced issue, CNN outperforms RF.

Class Accuracy RE RE RE CNN CNN NN

Before Undersample Oversample Before Undersample Oversample
Nontornadic 83.28% 69.78% (-13.5%) W83.58% (+0.3%) | 80.38% | 56.59% (-24%) B 77.03% (-3.3%)
Weakly-Tornadic 60.94% 47.02% (-14%) @55.43% (-55%) | 58.19% | 58.19% (0%) 57.46% (-0.7%)
Sig. Tornadic 23.84% 65.85% (+a2%) [W33.53% (+07%) | 26.69% | 37.94%+11.2%) B 36.01% (+9.3%)
Total Accuracy 70.14% 60.48% 68.43% 67.84% | 58.26% 65.12%

e When apply undersampling strategy, RF obtained better accuracies in both nontornadic
and significantly tornadic classes than CNN does.



Detail Predictions of Best Models

RF with undersampling

CNN with oversampling

Predicted | [0] [1] [2]
Actual

[0] 1478 | 403 237
[1] 380 749 464
[2] 31 81 216

e In both RF and CNN models, the most missed significantly tornadoes are predicted as

weak tornadoes.

® In RF model, the most missed weak tornadoes are predicted as significantly tornadoes

Predicted | [0] [1] [2]
Actual

[0] 1700 | 431 76
[1] 511 874 136
[2] 75 124 112

while those are predicted as nontornadic in CNN model.
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Conclusions and Future Work

Using RUC sounding data, we built and tested several RF and CNN models for predicting, in advance,

when a supercell will generate a tornado.

1 RF Feature Analysis: minimal contribution from pressure. Low-level v-wind, humidity, and
dewpoint had high importance. Results agree with known key features of tornado formation.

1 RF Performance: Undersampling nontornadic and weak tornadic significantly increases the
accuracy of significant tornadoes prediction. However, it severely impacts the accuracy of the
other two classes.

1 CNN Performance: Oversampling significant tornado data gave best results for identifying
significant tornadoes (36.01%) without drastically underdetecting nontornadic storms (77.03%).

Future Work

. Investigate and apply more alternative methods of training with imbalanced datasets.

1 Use a Generative Adversarial Network (GAN) to expand significant tornado sample size.

1 Perform feature importance analysis on CNN. Compare to RF and current knowledge of tornado
formation.

1 Expand dataset to include 3D data surrounding tornado event, instead of just 1D profile



