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● Motivation: Discover relationships between the atmosphere and sea-ice
● Data: Thermodynamic and Dynamic (atmosphere variables) factors 
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○ A good first step and interesting results but more research is needed...



Arctic warming is almost twice as large as global 
average

Why are 
temperatures 
warming faster 
in the Arctic 
than the rest of 
the world? 



Scientific questions

� Does the atmosphere primarily drive the sea ice variations or does 
sea ice dominate changes in atmosphere, over the Arctic? 

� Are global climate models capable to capture this relationship?

Atmosphere Sea ice?



Data sets
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Category Variables Data source Data set Temporal resolution 
coverage 

Sea ice
Sea ice extent National Snow and Ice Data Center/ 

National Aeronautics and Space 
Administration

Sea Ice Concentrations from Nimbus-7 
SMMR and DMSP SSM/I-SSMIS 
Passive Microwave Data, Version 1

11/1978-12/2018, Monthly

Thermodynamics

Air temperature European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly

Total precipitation European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly

Relative humidity European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly

Total cloud fraction, total 
cloud water path

European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly

Surface sensible and latent 
heat flux, Surface 

downwelling shortwave flux, 
Surface downwelling 

longwave flux

European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly

Dynamics

Sea level pressure European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly

Geopotential heights at 850 
hPa, 500 hPa and 200 hPa

European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly

U wind,  V wind and wind 
speed at 10 m

European Centre for Medium-Range 
Weather Forecasts

ERA-5 global reanalysis 01/1979-12/2019, Monthly



Pre-processing of data and other analysis

● Reduced the variables: Replaced GH_200hPa, GH_500hPa and 
GH_850hPa with their mean

● Normalized all the variables so that weights are not disproportionate

● Sensitivity Analysis of Hyperparameters

● Prepared a Causality Graph based on Domain Knowledge



Data pre-processing and time series decomposition

● Read gridded data (nc format) and average all data points within the Arctic domain (>60˚N)
● Create the time series (40 years x 12 months) for each variable and save it into CSV file 
● Apply additive model to each variable to get the detrended, deseasonalized and residual 

components



Time series decomposition
Depending on the nature of the trend and seasonality, 
a time series can be modeled as an additive, wherein, 
each observation in the series can be expressed as a 
sum of the components:

The additive model is Y[t] = Trend[t] + Seasonality[t] + 
Residual[t]

● Detrend a time series
Subtract the line of best fit from the time series. The 
line of best fit was obtained from a linear regression 
model with the time steps as the predictor.

● Deseasonalize a time series
Divide the averaged seasonal index from the time 
series. The seasonal index were calculated from 
moving averages with 12-month seasonal window. 



Lagging of variables for Temporal Graph
**ONLY NEEDED for NOTEARS and DAG-GNN**

● First convert time series X, Y, Z to variables X(t), X(t-1), X(t-2), Y(t), Y(t-1), 
Y(t-2), Z(t), Z(t-1), Z(t-2). 

● Calculate causality graph among these variables. Then convert the graph to 
only have nodes X, Y and Z. 

Similar idea to 
● Figure 1 in “Granger causality vs. dynamic Bayesian network inference: 

a comparative study” C. Zhou and J. Feng. BMC Bioinformatics, 2009
● Figure 2 in “Escaping the curse of dimensionality in estimating 

multivariate transfer entropy” J. Runge, J. Heitzig, V. Petoukhov, J. Kurths.



Lagging of variables for Temporal Graph
**ONLY NEEDED for NOTEARS and DAG-GNN**

● Figure 2 in “Escaping the curse of dimensionality in estimating 
multivariate transfer entropy” J. Runge, J. Heitzig, V. Petoukhov, J. Kurths.



Processing lagged variables for Temporal Graph

1. Discarded all non-valued rows. Eg: Only data including and below row 26 will be considered as training data. 

2. Normalized each column from the resulting data

**ONLY NEEDED for NOTEARS and DAG-GNN**



Causality/Causation/Cause and Effect Overview

 
One process or state, a cause, contributes to the production of another process or 
state, an effect

The cause is partly responsible for the effect, and the effect is partly dependent on 
the cause

Examples: 



Causal Discovery Objectives

● Discover causal relationships between sea ice variations and atmospheric 
processes

● Visualize causal relationships through 
graphs

● Using three state-of-the-art causal discovery methods
1. TCDF 
2. NOTEARS algorithm
3. DAG-GNN (builds upon NOTEARS)

Example of Causal graph:



Method 1 for Causality Discovery (TCDF)
● Temporal Causal Discovery Framework (TCDF)

○ Attention-based CNN  
○ Input: observational time series data
○ Output: Causality graph structure with time delay (lag)



Method 1 (TCDF) Causal Validation
A causal relationship is generally said to comply with two aspects:

1. Temporal precedence: the cause precedes its effect,
2. Physical influence: manipulation of the cause changes its effect.

To address:

1. Since the TCDF is temporal CNN, no info leakage from future to past. 
2. Usually through interventions - keep all other variables value fixed, and 

change Xi to see the changes in Xj.
a. Controlled experiments are hard to achieve 
b. Data-driven solutions: models the difference in evaluation score between original data and 

intervened dataset



Method 1 (TCDF) Permutation Importance (PI)
PI: measures how much an error score increases when the values of a variable 
are randomly permuted

Permuting a time series’ values removes chronologicity and therefore breaks a 
potential causal relationship between cause and effect.

Only if the loss of a network increases significantly when a variable is permuted, 
the variable is a cause of the predicted variable.

Similar to Granger’s causality validation: compare the loss of removing a variable



Method 2 (NOTEARS)
● Linear Structural Equation Model (SEM) with least-squares loss



Method 3 (DAG-GNN)
● They learn the weighted adjacency matrix of a DAG by using a dee 

generative model that generalizes linear SEM
● In a way -- they are able to learn nonlinear SEMs, whereas NO TEARS paper 

was only learning linear SEMs

Linear SEM

Non-linear SEM

Here Z is the encoded 
latent variable of X

NO TEARS:

DAG-GNN:



Method 3 (DAG-GNN) Architecture and Loss Function

● Let f1 = 1, i.e. identity mapping ; and f2 = MLP.
● Nonlinear MLP better captures any nonlinearities than linear SEM 

(NOTEARS)
● Above (Figure 1) Architecture naturally handles discrete variables



Table of atmospheric and sea ice variables abbreviations used



Domain Knowledge graph



Static model Results

NOTEARS DAG-GNN



Temporal model Results

NOTEARS DAG-GNNTCDF



Sensitivity to Hyperparameters: TCDF



Sensitivity to Hyperparameters: NOTEARS



Sensitivity to Hyperparameters: NOTEARS



Sensitivity to Hyperparameters: DAG-GNN



Sensitivity to Hyperparameters: DAG-GNN



Conclusions
● This study investigated the causality between multiple atmospheric processes and sea ice variations 

using three data-driven causality discovery approaches (TCDF, NOTEARS and DAG-GNN).
○ One advantage of utilizing these approaches is they not only generate causal graphs, but also 

provide quantified information on causal strength weight time lag.
○ We found that the outputs of the three algorithms are rather sensitive to the choice of 

hyperparameters.
■ Hence, some care must be taken when applying  data-driven causality discovery 

approaches and domain knowledge is indispensable for assessing whether their 
produced outputs are reasonable.

○ Nevertheless, this is a pioneer study in the application of data-drive causality discovery 
approaches in the atmosphere-sea ice feedbacks.
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