Machine Learning for Retrieving Cloud Optical Thickness from Observed Reflectance: 3D Effects

CyberTraining 2020 Team 5

Kallista Angeloff¹, Kirana Bergstrom², Tianhao Le³, Chengtao Xu⁴ RA: Chamara Rajapakshe⁵, Kevin Zheng⁵, Mentor: Zhibo Zhang⁵ ¹ Department of Atmospheric Sciences, University of Washington ² Department of Mathematical and Statistical Sciences, University of Colorado Denver ³ Division of Geological and Planetary Sciences, California Institute of Technology Department of Electrical Engineering, Embry-Riddle Aeronautical University, Daytona Beach ⁵Department of Physics, University of Maryland, Baltimore County

http://cybertraining.umbc.edu/

Cloud optical thickness (COT)

- Vertical optical depth
- Determines how much solar radiation reaches the planet's surface vs. how much is reflected or scattered
- Difficult to measure directly radar, lidar, pyranometers
- Calculated ("retrieved") from satellite observations of reflectance

Retrieval algorithm and assumptions

$$\tau_c' = (1-g)\tau_c = \frac{4K(\mu)K(\mu_0)}{3[R_{\infty}(\mu, \mu_0, \phi) - R(\tau_c; \mu, \mu_0, \phi)]} - 2q' - \frac{4A_g}{3(1-A_g)}$$

- Underlying assumptions: plane-parallel (2D) clouds, each pixel independent
- Actual clouds: 3D effects horizontal transport of radiation

Synthetic data

• 1D fractal cloud profiles – "lines of cloud"

CyberTraining: Big Data + High-Performance Computing + Atmospheric Sciences

Synthetic data

- Three connected parameters:
 - Liquid water path (LWP), a measure of the weight of liquid water between two points in the atmosphere fractal-like random variation
 - Cloud drop effective radius (CER), a measure of the size distribution of water drops within a cloud fixed; randomly assigned to each profile
 - Cloud optical thickness (COT) calculated from other two

3D Radiative Transfer Model (SHDOM)

- Spherical Harmonic Discrete Ordinate Method (SHDOM)
- Inputs:
 - COT, CER, LWP
 - Solar zenith angle (SZA) angle of the sunlight striking the cloud; 60°
- Outputs:
 - Reflectance

3D Radiative Transfer Model (SHDOM)

• "Step cloud" check

How to get from reflectance to COT?

- Historically an inverse problem
- Bispectral method still used by MODIS, for example
 - One visible wavelength, one absorbing wavelength
- Simplification of machine learning: pattern recognition (statistical inference) rather than inversion

DNN structure

- Current DNN structure based on DNN-2r
- [Okamura et al 2017]
- Optimizer: Adam, Loss =
 - mean_square_error
- Batch = 4, epochs =10

Results from deep neural network (DNN)

CyberTraining: Big Data + High-Performance Computing + Atmospheric Sciences

Results from deep neural network (DNN)

- Although MSE converged to a relatively low value, overall COT predictions were inaccurate (unphysical)
- Accuracy decreased with increasing spatial position
- Most likely explanation: overfitting

Convolutional neural network (CNN) spatial slicing

Convolutional neural network (CNN) spatial slicing

Convolutional neural network (CNN) spatial slicing

CNN structure

- Current CNN structure based on DNN-4w [Okamura et al]
- Parallelization possible over spatial slices

CyberTraining: Big Data + High-Performance Computing + Atmospheric Sciences

Results from CNN

- Loss: mean squared error
- Dropout rate: 0.5
- Batch size: 1024
- Epochs: 30

CyberTraining: Big Data + High-Performance Computing + Atmospheric Sciences

Discussion of results

- The CNN was more successful than the DNN: why?
 - Not a one-to-one comparison full data vs. spatial slicing
 - Nature of the data more closely resembles an image problem
- Edge (boundary) cases inherently more difficult
- More successful at predicting local rather than global COT
 - Some outliers and unphysical predictions pre- or post-processing

Future directions

- Expanded dataset tuning
 - More data to better cover parameter range
 - More parameter tuning and structural changes
- Emulating a multi-scale model
 - Using a DNN-based global method to inform the local CNN
- 2D data testing on satellite data, e.g. MODIS
 - Structure of spatially sliced CNN lends itself to parallelization