Mineral Dust Detect Algorithms Using Satellite Data

Janita Patwardhan¹, Peichang Shi², and Qianqian Song³

Advisors: Dr. Jianwu Wang² and Dr. Zhibo Zhang³

¹Department of Mathematics & Statistics, UMBC ²Department of Information Systems, UMBC ³Department of Physics, UMBC

Acknowledgements: NSF, UMBC, HPCF

CyberTraining: Big Data + High-Performance Computing + Atmospheric Sciences University of Maryland, Baltimore County, Spring 2018

Outline

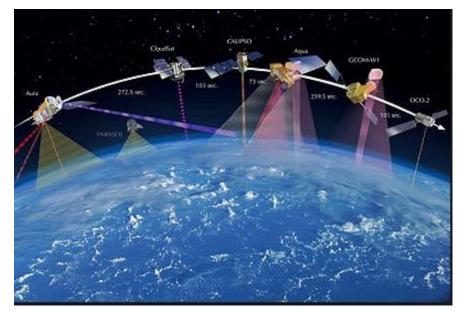
• Introduction

- Data Preparation
- Our Algorithms
- Conclusion

Mineral Dust Aerosol

- Defined as soil particles in the air
- Adversely affects air quality and human health
- Changes temperature structure in the atmosphere

NASA Worldview, May 9 2007: https://go.nasa.gov/2IlNV7r


Satellite Data: MODIS and CALIPSO

MODIS:

- Passive sensor onboard Aqua and Terra satellite
- Images the entirety of the earth every 1-2 days
- 36 spectral bands

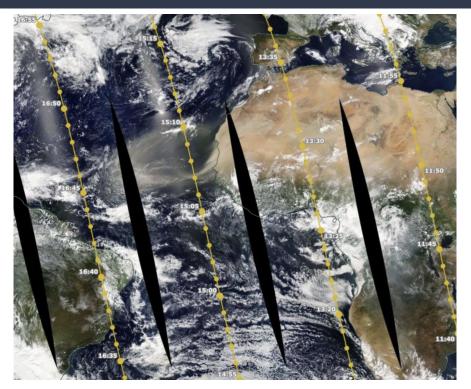
CALIPSO

- Satellite with active Lidar sensor
- Better able to detect dust by using depolarization

https://en.wikipedia.org/wiki/A-train_(satellite_constellation)

Project Objectives

- 1. Collocate the MODIS and CALIPSO data
- 2. Develop algorithms using MODIS data to detect dust over ocean
 - a. Physically based algorithm
 - b. Big data/machine learning algorithm
- 3. Design algorithms using MODIS data for detection over land
 - a. Physically based algorithm
 - b. Big data/machine learning algorithm
- 4. Determine accuracy rate of algorithms using CALIPSO data
- 5. Compare accuracy of our algorithms to published algorithms


Project Objectives: Achieved

- 1. Collocate the MODIS and CALIPSO data
- 2. Develop algorithms using MODIS data to detect dust over ocean
 - a. Physically based algorithm
 - b. Big data/machine learning algorithm
- 3. Design algorithms using MODIS data for detection over land
 - a. Physically based algorithm
 - b. Big data/machine learning algorithm
- 4. Determine accuracy rate of algorithms using CALIPSO data
- 5. Compare accuracy of our algorithms to published algorithms

Outline

- Introduction
- Data Preparation
- Our Algorithms
- Conclusion

Collocating Data

• Already have collocated data for CALIPSO and MODIS level-2 data

- CALIPSO data tells us dust for every 5 km
- MODIS data gives information for every 1 km
 - Took average over 5 pixels to get 5km resolution

NASA Worldview: https://go.nasa.gov/2KwnxV4

Variables Utilized

- Radiance/Emissivity from 36 spectral bands
- Geometry

Regions and Times Used

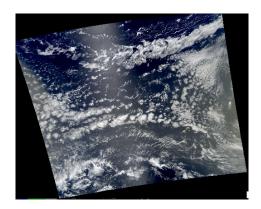
Northwest Coast of Africa (Atlantic Ocean)

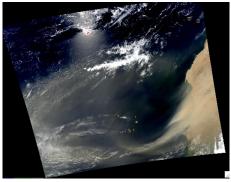
- March 13, 2007
- May 9, 2007
- July 15, 2007
- March 31, 2008
- June 22, 2009
- April 22, 2010

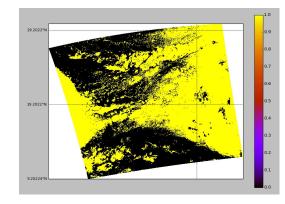
Coast of Arabian Peninsula (Arabian Sea)

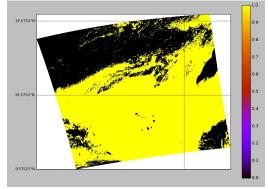
- November 5, 2009
- November 11, 2009

Outline

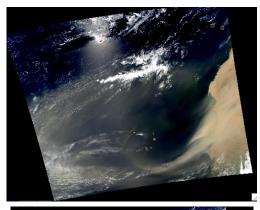

- Introduction
- Data Preparation
- Our Algorithms
- Conclusion

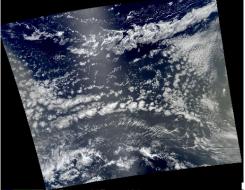

Simple Physical Algorithm

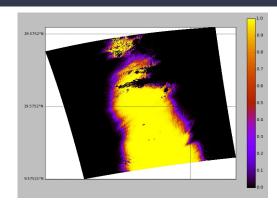

- Ackerman¹ showed that BTD(11-12um) of dust is smaller than that of clouds
- Our physical algorithm:
 - BTD < threshold : dust
 - BTD > threshold : dust-free
- Threshold selection:
 - Applied different threshold for MODIS data along CALIPSO track
 - Calculated accuracy for different threshold with CALIPSO dust detection as reference
 - Found threshold ~ 0.8 gives highest accuracy around 60%~70%

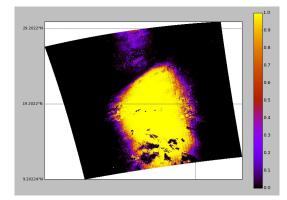

¹Ackerman, Steven A. "Remote sensing aerosols using satellite infrared observations." *Journal of Geophysical Research: Atmospheres* 102.D14 (1997): 17069–17079.

Results of Physical Algorithm

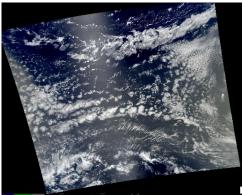

Use threshold = 0.8 July 15, 2007

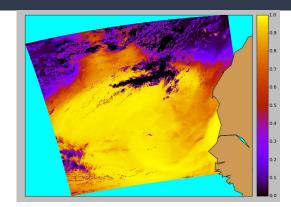

Use threshold = 0.8 June 22, 2009

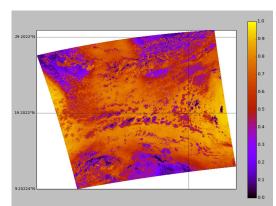

Machine Learning Method: Logistic Regression


- Summary of method
 - More intuitive and robust than other regressions
 - Not many assumptions needed
 - Goal is to select best set of predictor variables and create a model for outcome variable
- Types of simulations run
 - Using all variables
 - Using 6 variables
 - R0.47
 - R0.47/R0.64
 - BTD(3.9um-11um)
 - BTD(11-12um)
 - R0.42um, R0.68
 - Using 6 variables with geometry

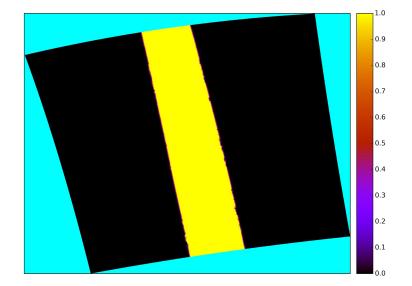
Logistic Regression Results: All Variables

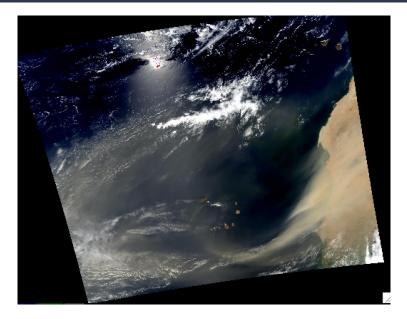


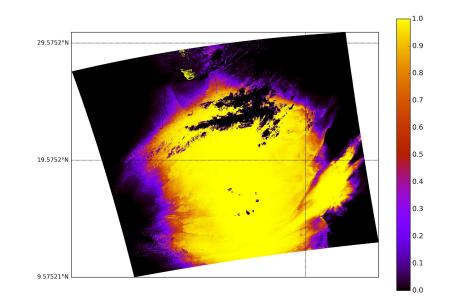

June 22, 2009


July 15, 2007

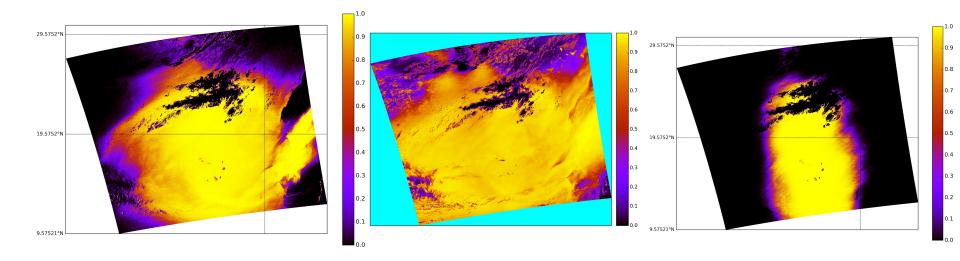
Logistic Regression Results: 6 Variables




- R0.47
- R0.47/R0.64
- BTD(3.9um-11u m)
- BTD(11-12um)
- R0.42um, R0.68


Logistic Regression Results: 6 Variables and Geometry

June 22, 2009


Logistic Regression Results: Multiple Data Sets with All Band variables

June 22, 2009

Multiple data vs Single data

Multiple dataset with parsimonious variables

Multiple data with 6 variables

Sing dataset with parsimonious variables

Outline

- Introduction
- Data Preparation
- Our Algorithms
- Conclusion

Accuracy Comparison: July 15, 2007

	Accuracy Rate	False Positive	False Negative
Physical Algorithm	50.8%	44.6%	4.6%
LR- All variables	90.5%	2.1%	7.4%
LR- 6 variables	78.3%	6.6%	15.1%
LR- 6 variables and geometry	81.7%	7.5%	10.8%
LR- Multiple data sets, all variables and geometry	92.4%	2%	5.6%
LR-Multiple datasets, parsimonious model	89.5%	2%	8.4%
LR single dataset , parsimonious model	93.2%	1.7%	5.1%

Future Work

- Try other machine learning techniques for the machine learning algorithm
- Create an algorithm for detecting dust over land
- Combine land and ocean algorithms
- Decrease false positive and negative rates
- Compare accuracy rates to those of published algorithms

Thank You!